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Unsteady free-surface flow a t  the bow of a steadily moving, two-dimensional body 
is solved using a modified Eulerian-Lagrangian technique. Lagrangian marker 
particles are distributed on both the free surface and the far-field boundary. The flow 
field corresponding to an inviscid, double-body solution is used for the initial 
condition. Solutions are obtained over a range of Froude numbers for bodies of three 
different shapes: a vertical step, a faired profile, and a bulbous bow. A transition 
Froude number exists a t  which the bow wave begins to overturn and break. The 
value of the transition Froude number depends on the bow shape. A stagnation point 
is observed to be present below the free surface during the initial stage of the wave 
formation. For flows occurring above the transition Froude number, the stagnation 
point remains trapped below the free surface as the wave overturns. Below the 
transition Froude number, the stagnation point rises to the surface as the crest of the 
transient bow wave moves upstream and away from the body. 

1. Introduction 
Considerable attention has been given in recent years to the study of fluid motion 

a t  the bow of a ship. This effort was stimulated by Baba’s (1969) observation that 
there is a significant component of wave resistance associated with the breaking of 
the bow wave. Since then, much information has been obtained in the form of 
experimental observations. Theoretical calculations have been successful a t  
explaining linear phenomena but do not account satisfactorily for the nonlinear 
effects. These include the steepening and overturning of the bow wave which is 
believed to be a possible source for the necklace of white water that wraps around the 
bow and the sides of a ship (Mori 1984). 

This paper investigates the nonlinear behaviour of the free surface a t  the bow of 
a two-dimensional, translating body. A mixed Eulerian-Lagrangian boundary- 
integral equation method is used to calculate the evolution of the free surface. 
Because the shape of the free surface is defined by Lagrangian particles, solutions in 
which the bow wave overturns and breaks are admissible. 

Dagan & Tulin (1972) studied two-dimensional, steady flow past a semi-infinite 
body. Specifically, they derived the small-Froude-number solution, up to second 
order, of flow past a vertical step. They found that the lowest-order in the asymptotic 
expansion corresponds to the double-body flow where the free surface is replaced by 
a rigid wall. This confirms Ogilvie’s (1968) assumption that the flow should be 
linearized about the double-body solution and not the free-stream solution. 
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Vanden-Broeck & Tuck (1977) generalized Dagan & Tulin’s formulation to include 
plane faces of arbitrary angle and derived a method to  continue the asymptotic series 
indefinitely. They found that the asymptotic series has a zero radius of convergence. 
They were able to sum the series using Shank’s transformations, but the resulting 
free-surface profiles were only piecewise continuous. They argued that the 
discontinuity is due to the non-uniqueness of the low-Froude-number expansion 
(Vanden-Broeck, Schwartz & Tuck 1978). Vanden-Broeck & Tuck (1977) concluded 
that no continuous free-surface profile exists for a bow with a vertical or an oblique 
flat face. They speculated that the form of the solution is that  of an overturning jet. 

The possible absence of a nonlinear, steady-state solution in bow flow suggests that 
a formulation in the time domain is desirable. Our method is based on that of Vinje 
& Brevig (1981) with modifications made by Lin, Newman & Yue (1984) for handling 
solid boundaries. Vinje & Brevig, building on the well-known work of Longuet- 
Higgins & Cokelet (1976), solved the problem of a breaking wave in water of finite 
depth in terms of the complex potential. Using Cauchy’s theorem, they obtained 
Fredholm integral equations of the second kind for the potential and the stream 
function. The solution to  these equations were then used in the Lagrangian time- 
stepping scheme to advance the free surface. Baker, Meiron & Orszag (1982), in a 
similar study, derived, integral equations of the second kind by distributing dipoles 
on the free surface and sources on solid surfaces. A marker-and-cell type model has 
been used by Miyata, Suzuki & Kajitani (1981) to study nonlinear ship waves. 

The novelty in our approach is the treatment of the initial conditions and the far- 
field closure condition. For closure, we place Lagrangian particles a t  the nodes of the 
elements of the far-field boundary. (These are in addition to  the Lagrangian particles 
distributed on the free surface.) We derive evolution equations for the position and 
the potential of the particles on the far-field boundaries. The evolution equation for 
the potential is an approximation. In Vinje & Brevig (1981) a closure condition was 
imposed by assuming that the solution was spatially periodic. In  Lin et al. (1984), the 
domain is treated as being closed. 

In  traditional studies of time-dependent flow past a body, the initial conditions 
that are specified correspond to  an impulsive start from rest. In  such formulations, 
the velocity potential is taken to  be zero on the free surface at time t = 0. Lin et al. 
(1984) solved for the impulsive motion of a wavemaker using such initial conditions 
and found that the elevation of the intersection point between the body and the free 
surface is unbounded. This difficulty can be somewhat remedied by a non-impulsive 
start as suggested by Roberts (1987). However, we found that numerical 
implementation of a gentle start-up required a series of small, impulsive accelerations 
which eventually caused an unbounded rise in the free-surface elevation at the 
intersection point. 

In  reality, the free-surface elevation at the bow of a steadily translating ship 
remains finite for all time. With this in mind, we sought alternative initial conditions, 
ones that would result in bounded wave elevations. Here, the initial conditions are 
specified as the steady-state solution for a semi-infinite body with a rigid free-surface 
condition (i.e. the double-body flow). This corresponds to placing a lid over the free 
surface and allowing the flow to reach steady state. At t = 0, the lid is removed, and 
the flow is allowed to  evolve. An important consequence of this approach is that we 
have avoided accelerating the body impulsively, and thus avoided an unbounded 
free-surface elevation. 

In $2, we review briefly the boundary-integral formulation used to solve for the 



Nonlinear free-surface $ow at a two-dimensional bow 59 

Body velocity = CI 
__c 

! D 

FIGURE 1. Computational domain for flow past a semi-infinite body with a vertical face. 

flow field and also review the evolution equations used to advance the free surface. 
The new far-field boundary conditions and initial conditions are discussed in $3. In 
$4, we present a sample calculation for the flow around a vertical step and show the 
self-consistency of the solution method by comparing the increase in fluid energy to 
the amount of work done on the fluid by the boundaries. Calculations for bodies with 
different bow shapes and different translational speeds are given in $ 5  along with a 
discussion of the results. This is followed by concluding remarks in $6. 

2. Mathematical formulation 
We formulate the problem of time-dependent, two-dimensional flow past a semi- 

infinite body having an arbitrary bow shape and a maximum draught of d. As an 
illustration, we consider a body with vertical face initially located a t  x = 0 and with 
a bottom, extending from x = 0 to x = - 00, a t  y = -d (see figure 1). The body is 
assumed to  translate with a horizontal velocity U .  The fluid domain D is enclosed by 
the body boundary S,, the free-surface boundary S,, and the far-field boundary L’. 
The total boundary S ,  U S,  u Z will be referred to as C. 

Assuming irrotational flow and incompressible fluid, we describe the absolute 
motion of the fluid inside the domain by a complex potential P(z, t )  : 

(1) pcz, t )  = $(z,  t )  + W Z ,  t ) ,  

where $ ( z ,  t )  is the velocity potential and ~ ( z ,  t )  is the stream function. The complex 
potential is an analytic function of z = x+iy. Thus, Cauchy’s integral formula can be 
used to derive integral equations that relate the variables in the field to  the values 
of P(z ,  t )  on the field’s boundary. 

2.1. Integral equation and its numerical treatment 

The following is a brief description of the integral-equation formulation. A more 
complete account is given in Vinje & Brevig (1981). We apply Cauchy’s integral 
formula to the analytic function P, evaluating it a t  a point zo inside the fluid domain : 

FLM 209 
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Differentiating ( 2 )  with respect to zo yields a similar expression that relates the 
boundary values of P to  the complex velocity w inside the fluid domain: 

with u and v being the fluid velocity components in the x- and y-directions 
respectively. 

As is well known in potential theory, if zo approaches C, Cauchy’s integral formula 
becomes 

where a is the interior angle between the two tangents intersecting locally a t  zo. If 
C is smooth, then a: = R. 

We show in the next section that the boundary conditions are mixed. On the free 
surface and the far-field boundary S ,  U C only the potential 4 is specified, and on the 
body S,  only the stream function $ is specified. The portions on which 4 is given are 
referred to as C, ; the parts of the boundary on which t,h is given are referred to as C,. 
The key step in calculating the flow is to determine the unknown portion of /3 around 
the boundary. Then we can apply (2) and (3) to calculate the flow everywhere in the 
fluid domain. Taking the real Re and imaginary Im parts of ( 5 ) ,  we obtain 

Equation (6) can be used to determine the unknown q5 and t,h on C, and C, 
respectively at each value of t .  The integral equations are Fredholm type of the 
second kind; the existence and uniqueness of their solutions are well studied. 

We seek an approximate solution of the integral equations by dividing the contour 
C into line segments defined by the nodes zi and where j = 1,  . . . , N .  If P ( z )  is 
discretized as 

N 

where Ai are the ‘shape functions’ and Bl are the nodal values at z,, then (6) can be 
reduced to the following approximate linear system : 

The rk,i are influence coefficients which can be obtained by straightforward 
integration once A,(z) are chosen. 

The nodal points a t  which the boundary conditions are discontinuous (where C, 
and C, intersect) require special care. At these points, both the potential and the 
stream function should be specified (Lin et al. 1984). Since both parts of P are known 
a t  the intersection points, we remove the equations that correspond to these nodes 
from the linear system. In the cases that we study in this paper, there are two such 
points, S,  n S ,  and S,  n Z, so we are always solving a system of ( N - 2 )  equations 
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in (N-  2) unknowns. The solution to these equations is obtained by Gauss-Seidel 
iteration. Rapid convergence can be achieved by using the solution from the previous 
time step as an initial guess. 

2 2.  Body and free-surface boundary conditions 
Since the body boundary is a streamline and is translating a t  a constant velocity U ,  
the stream function on S,  is known for all time and is simply given by 

+(z, t )  = U(y+ l ) ,  Z€S,. (9) 

The evolution of the positions and the values of the potential of fluid particles on 
the free surface S,  is carried out in a manner suggested by Longuet-Higgins & 
Cokelet (1976). The positions of the fluid particles are integrated in time using the 
kinematic free-surface boundary condition 

DZ 
- Dt = W* = u+iv, ZES,, 

where the superscript asterisk denotes complex conjugate and D/Dt is the material 
derivative. The potential q5 is integrated in time using the dynamic boundary 
condition 

= ;ww*-ggy, ZES,, 
Dt 

where y = gy(s, t )  is the free-surface elevation and g is the gravitational acceleration. 

3. Far-field conditions and initial conditions 
The far-field boundary is treated as a material surface whose position changes with 

time. The positions of fluid particles on this boundary evolve according to the same 
equation that describes the motion of free-surface particles : 

DZ 
- = w* = u+iv, 
Dt 

ZEZ. 

Ry Euler’s integral, the material derivative of the potential of the particle is given 

D# P - = +w*-gy--, Z € C ,  
Dt P 

where p is the fluid pressure. This equation is the same as (11) except for the extra 
pressure term. This term vanishes on the free surface but, in general, will not for a 
submerged particle. A field equation for p can be obtained by taking the divergence 
of the gradient of (13) : 

(14) 
1 

P 
-V”(Z, t )  = -+V“ww*), Z € C .  

As is well known, the elliptic nature of p implies the necessity of knowing p outside 
of c. 

We can avoid having to solve (14) if we know how the pressure of a fluid particle 
evolves with time. From (13), taking the material derivative of p ,  we obtain 
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If the quadratic terms in velocity are neglected, then 
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with error of 0(1~1-~) for a source-like flow. Further, if the far-field potential could be 
represented by a linear, time-dependent wave source (Finklestein 1957) located a t  
z" = Ut - ib (where b is the distance below the free surface), then the far-field potential 
may be approximated by 

q5(z,y,t) = 4 t )  -log-------Re 12-4 9 [ a(7)d7 J:seik(z-a  sin[(gk)i(t-~)], (17)  27r lZ--Z*I 7r 

where g( t )  is the source strength a t  time t and z"* is the location of the image source. 
It is possible to show that the second term associated with (17)  satisfies the right- 
hand side of (16). Thus, the first term of (17) yields the dominant contribution 

Here, we employ 

with p given for all 

the condition 

%=0, Z € Z ,  
Dt 

time by an initial condition a t  t = 0. Equation (19) states that 
far from the bow, all isobars are material surfaces. This is an approximate condition 
that becomes exact in the limit as z E Z goes to 00. If we place the far-field boundary 
sufficiently far from the bow of the body, then the right-hand side of (18), which goes 
as ~ ( I z I - ' ) ,  will be small and have little effect on the calculation. We demonstrate in 
the next section that the errors in the solution caused by the implementation of (19) 
appear over time as a drop in the upstream water level. This gives a convenient 
criterion for selecting the location of the far-field boundary. We simply place C far 
enough away from the bow of the body so that the drop of the upstream water level 
remains small for all time. 

Initial conditions on the free surface and far-field boundary must now be given in 
terms of the position, the potential, and the pressure. The initial positions of the fluid 
particles are 

I ) ( X , O )  = 0, Z€S,, 

z = z o ,  Z € Z ,  

where zo represents the position of the far field a t  t = 0. The initial condition for q5 on 
both the free surface and far-field boundary is specified as 

$ ( z , t )  = $o at  t = 0, (22) 

where represents the values of the potential from the steady-state, double-body 
solution (a$/ay = 0 at  y = 0)  satisfying (9). A pressure field p-  therefore exists in the 
fluid at t = 0- and is given by 
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FIGURE 2. Sample calculation of bow-wave evolution for draught Froude number Fd = 1.0 and 
time t = 0 to 3.6. Case 1 (-) : the upstream boundary is located initially 20 units upstream. Case 
2 (----): upstream boundary is placed 5.25 units upstream. 

At t = 0+, (13) applies, thus 

a$ P(Z9 Of) -((z,O')+~(V$4,(2+gy+- = 0, Z€D. 
at P 

The requirement that p ( z ,  Of) = 0 on AS, and the continuity of $ a t  t = 0 thus imply 
that for z E D 

P(Z, 0') = Po = - PSYO, (26) 

where p o  is the initial pressure field that exists a t  t = O+.  Physically, (22) and (26) 
represent a sudden removal of the pressure distribution from the free surface. 

Thus, using (19), (13) yields the evolution equation of $ for a fluid particle on C. 
Equation (8) can then be used to determine I@ and consequently the complex 
velocity w. 

An alternative boundary condition on C is to specify I@ = I@, for all time, where I@o 
is the stream function that corresponds to the double-body flow. This condition 
implies that the net flux into D equals zero. When this was implemented, the shape 
of the bow wave was found to be similar to that obtained in the present study, but 
the upstream asymptotic water level fell below the equilibrium waterline (see 
Grosenbaugh 1987). This occurred as a result of the rise of the wave elevation a t  the 
bow and the need to satisfy continuity. By specifying the potential $ on C and 
allowing it to evolve with the solution, as we have done in this paper, fluid can 
accumulate a t  the bow of the body without having to be offset elsewhere. 

4. A test problem and energy conservation 
The flow solution for a simple bow geometry was obtained using the formulation 

described in the previous sections, and the results are shown in figure 2. The 
evolution of the free surface for t" = 0 to t" = 3.6 is plotted a t  time intervals of 0.4, 
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x l d  

FIGURE 3. Change in position of the upstream, far-field boundary with the approach of the bow 
wave. Case 2. 

where t" = t(g/d)i. The draught Froude number, defined as Fd = U/(gd)i, was equal to 
1 .O. The evolution equations (lo)-( 13) were solved using a fourth-order Adams 
predictor-corrector method with a fourth-order Runge-Kutta algorithm as the 
starter (Hildebrand 1976). The size of the time step was 0.01. A regridding scheme 
(Dommermuth & Yue 1986) based on spline fitting was applied every 20 time steps 
to eliminate a sawtooth instability reported by Longuet-Higgins & Cokelet (1976). 

The solid curves in figure 2 correspond to calculations obtained using a fluid 
domain that extended initially 20 units upstream and downstream and was 20 units 
deep (Case 1).  A test of the robustness of the far-field boundary conditions was made 
by placing the upstream boundary 5.25 units ahead of the body and repeating the 
calculations (Case 2). These results are shown in figure 2 by the dashed curves. 
Differences between the two results are most pronounced when the bow wave, in 
Case 2, is near the upstream boundary. This is expected because the assumptions 
implied by (19) are no longer valid. Figure 3 is an expanded view of the Case 2 
calculations. The plot shows clearly how the upstream boundary responds to  the 
approach of the body and its bow wave. 

It is desirable to apply an accuracy check to the calculations based on energy 
considerations. A form slightly different from that of John (1949) is used here. We 
define 

= Is, (~+lV~I"+g(y-yy,))dS, 127 ) 

which represents a sum of the kinetic energy and the potential energy (relative to the 
initial configuration of the fluid). We can derive the following relation (see Yeung 



Nonlinear free-surface $ow at a two-dimensional bow 65 

.......................................................................................................................................... + 5 %  

-5% 
.............................................................................................................................................. 

I 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 
Time 

FIGURE 4. The relative difference between the amount of work input to the fluid domain and 
the increase in energy of the fluid for Case 1 of the test problem (refer to figure 2). 

1982) between the amount of work done by the boundaries on the fluid domain and 
the change in the energy of the fluid: 

where E, is the value of (27) a t  time t = 0' and 

An energy balance calculation was performed on the results obtained from the 
study of Case 1 (see figure 2). The integrals in (28) and (29) were calculated by 
trapezoidal integration. The percent difference between the amount of work, given 
by the left-hand side of (28), and the increase in fluid energy from the initial state, 
given by the right-hand side of (28), is plotted as a function of time in figure 4. The 
plot shows that the relative differences for this example were always less than 5 %. 

5, Results and discussion 
We obtained the solution of the bow-flow problem for three different geometries : 

a vertical step, a body with a rounded stem which will be referred to as a 'faired 
body', and a body having a protruding or bulbous bow. We now present these 
results. 

The evolution of the free surface near the bow of the vertical step was computed 
over a range of draught Froude numbers from 0.5 to 1.0 (see figure 5). All results 
presented here are plotted in a coordinate system that is moving with the body (from 
left to right). For Fd = 0.5 and Fd = 0.6, the wave profiles are plotted every 0.8 non- 
dimensional time units. For Fd 2 0.7, they are plotted every 0.4 time units. The size 
of the time step for all the calculations was 0.01 time units. A time step of 0.02 was 
used to check the convergence of the results. 
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FIGURE 5.  Bow-wave evolution for vertical step for Froude numbers F, = 0.5 to 1.0. 
(a) Fd = 0.5; (b )  0.6; (c) 0 . 7 ;  ( d )  0.8; ( e )  0.9; ( f )  1.0. 
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The velocity field within the fluid domain was calculated using (3). For points on 
the boundary, (3) yields w = dp/dz which can be obtained using central differencing. 
Figure 6 shows the instantaneous velocity field (as seen by an observer moving with 
the body) for Fd = 0.5. The individual frames are spaced at  intervals of 0.8 time units. 
Figure 7 shows the instantaneous velocity field for Fd = 1.0. The individual frames 
in this case are spaced at intervals of 0.4 time units. The size of the arrows in both 
figures is scaled according to the magnitude of the flow velocity. Shown in each of the 
frames is the stagnation point, which is taken as the point at which the tangential 
velocity on the body vanishes. 

The shape of the bow of the faired body is found by solving the equation 

y = 0.3235 tan-' (,+:3235). 
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FIGURE 6. Instantaneous flow fields for vertical step, F, = 0.5, for time (a)  t^ = 0.8 ; (6) 1.6 ; (c) 2.4; 
( d )  3.2; ( e )  4.0; (f) 4.8; (9)  5.6; (h)  6.4. (Viewed in a coordinate system moving with the body.) 0 ,  

Stagnation point. 
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FIGURE 8. Bow-wave evolution for ‘faired body’ for Froude numbers Fa = 0.5 to 1.0. 
(a)  Fa = 0.5; ( b )  0.6; (c) 0.7; ( d )  0.8; ( e )  0.9; (f) 1.0. 

This corresponds to  the shape generated by placing a simple source in a uniform flow 
so that the stagnation point of the ‘double-body ’ flow is a t  the origin and the draught 
of the body a t  x = - co is 1.0. The initial conditions are given by 

p(z, 0) = 0.3235Fdlog (z+0.3235). (31) 

The evolution of the free surface for Froude numbers Fd = 0.5 to Fd = 1.0 is shown 
in figure 8. The draught is measured a t  the point of intersection between the body 
and the downstream, far-field boundary. In each of the figures, the profiles are spaced 
a t  equal intervals of 0.4 time units. The time step for all the calculations was 0.01 
time units. 
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FIGURE 9. Bow-wave evolution for bulbous bow for Froude numbers F, = 0.5 to 1.0. 
(a) F, = 0.5; (b )  0.6; (c) 0.7; ( d )  0.8; ( e )  0.9; (f) 1.0. 

The profile of the bulbous bow is given by the equation 

0 2 y 2 -0.32, (O' 

+0.32, -0.32 2 y 2 -0.84, (32) 

4[(0.16)'- ( ~ + 0 . 8 4 ) ~ ] + ,  -0.84 2 y 2 -1 .  

Initial conditions for the potential $ were obtained by applying Green's theorem to 
a closed body that was 200 units long with a bulb at each end (Yeung 1975). We 
estimate that the difference between the values of the potential for this closed body 
and a semi-infinite body are at most to/.. 

The evolution of the bow wave for the bulbous bow for Froude numbers Fd = 0.5 
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to Fa = 1.0 are shown in figure 9. A time step of 0.01 time units was used for all the 
calculations. For Fd = 0.5 to Fa = 0.7, the bow wave profiles are plotted every 0.8 
time units. The remaining wave profiles for Fa = 0.8 to Fd = 1.0 are plotted every 0.4 
time units. 

The existence of two different flow regimes is typical for all bow shapes studied 
here. At low Froude numbers a bow wave forms and travels upstream but does not 
overturn. The amplitude of this wave actually decays with time, and the slope just 
ahead of the wave becomes less steep. The long-time solution of this nonlinear 
problem is limited, however, by an inability to resolve waves of increasingly shorter 
wavelengths near the bow. Eventually, the formation and overturning of a second 
and shorter wave behind the main bow wave prevents the calculation from 
continuing. 

For higher Froude numbers, the wavefront of the bow wave steepens and 
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overturns. The value of the Froude number above which overturning occurs is a 
function of the body shape. Let us define the transition Froude number as the lowest 
Froude number a t  which the wavefront of the bow wave becomes vertical. The 
transition for the vertical step occurred a t  approximately Fd = 0.6 (figure 5). For the 
faired body (figure 8) the transition was near Fd = 0.5. The body with the bulbous 
bow had a transition Froude number of approximately 0.7 (see figure 9). 

It is noteworthy that the two distinct types of responses shown here are 
reminiscent of Tulin’s (1982) classification of steady nonlinear waves behind a 
submerged body. He argued that weakly nonlinear and strongly nonlinear regimes 
exist. Thus, for sufficiently strong disturbances, steep wave elevations arise whose 
physical existence in a steady-state manner is questionable. 

Tuck & Vanden-Broeck (1985) examined the steady free-surface flow about bodies 
with different shapes and attemped to find nonlinear solutions that would represent 
bow flow. They did this by calculating waveless stern flows! If they were successful 
then they could reverse the flow since a splashless bow would automatically satisfy 
the upstream radiation condition. Their study suggests the possible existence of 
splashless flows. They noted that the profile of the splashless bow has the shape of a 
protruding bow. In the present study, we showed that the bulbous bow had the 
favourable effect of delaying wave-breaking instability to a higher Froude number. 

A simultaneous display of the bow-wave profiles at the transition Froude number for 
the three bodies (figure 10) shows their striking similarity. The similarity suggests a 
possible self-similar scaling in space and time (discussed further in Grosenbaugh 
1987). 

An important question that we hoped to address when we began this study was 
what are the nature and location of the stagnation point. In Dagan & Tulin (1972) 
and Vanden-Broeck & Tuck (1977) it was explicitly assumed that the stagnation 
point occurred at the intersection between the free surface and the body. In  three- 
dimensional flow, Wehausen (1969) made an implicit assumption that there was a 
line of stagnation points along the bow stem when he formulated the wave resistance 
problem in Lagrangian coordinates. Hong (1977) used these results to predict the 
second-order wave resistance of different ship models. He found that good agreement 
with experimental data was limited to a narrow range of Froude numbers. The poor 
agreement outside of this range was attributed to the stagnation-point assumption. 
Fry & Kim (1984) used a three-component laser-Doppler velocimeter to determine 
experimentally the velocity field a t  the bow of ship models a t  draught Froude 
numbers Fd = 1.06 to 1.96. They were able to identify an isolated stagnation point 
located beneath the free surface for the models with bulbous bows. 

The present study indicates that  there exists an isolated stagnation point which 
behaves differently for the breaking and non-breaking flow regimes. As can be seen 
from figure 7, the stagnation point of the calculated flow a t  F, = 1.0 for a vertical 
step is located below the free surface and remains there as the wave overturns. For 
Fd = 0.5 (see figure 6), the stagnation point initially drops below the free surface but 
then returns to the surface. Similar behaviour was also observed for the other two 
geometries. The vertical locations of the stagnation point are plotted as a function 
of time in figure 11 for all three bow shapes. Figure l l ( a )  corresponds to flow in 
the non-breaking regime (F, = 0.5). Figure 11 ( b )  shows the behaviour for flow in the 
breaking regime (F, = 1.0). The curves represent the free-surface elevation a t  the 
bow, and the open symbols correspond to the location of stagnation point. 

We believe that for sufficiently low Froude numbers, calculations with accurate 
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spatial resolution would approach steady-state conditions. This may be inferred by 
examining the profiles of all the bow shapes at Froude numbers below the transition 
value. The amplitude of the bow wave decays with time, the stagnation point returns 
to the free surface, and the free-surface elevation at the body settles near the 
stagnation height of (see figure 11 a) .  The reason that we were not able to reach 
steady state was that waves of higher and higher wavenumbers formed at the bow. 
Thus, no matter how small the grid, there would always be a wave that could not be 
resolved by the calculation. 

6. Conclusion 
A mixed Eulerian-Lagrangian method is used to solve the unsteady flow around 

a semi-infinite body. The novelty in the approach is in the choice of initial and far- 
field boundary conditions. An inviscid 'double-body ' solution is taken as the initial 
condition. It is argued that this can be a realistic condition to use in calculating the 
unsteady flow of a body that has been moving for a long time. The alternative of 
setting the potential in the fluid equal to zero at  t = 0 and starting the body from rest 
is more reasonable for studying impulsive motion. 

Lagrangian marker particles are distributed on both the free surface and the far- 
field boundary. Evolution equations, describing how the particles move and how 
their potential changes, are derived for the points on the far-field boundary. The 
evolution equation for the potential is exact for particles on the free surface ; it is 
approximate on the far-field boundary. The pressure of the far-field particles is kept 
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constant with time. It is shown that this assumption gives an error which varies 
inversely with the distance from the body. Calculations using this method were found 
to give a relative error in energy of less than 5 % .  This error does not accumulate. 

Solutions were obtained over a range of Froude numbers for three different body 
shapes : a vertical step, a faired profile, and a bulbous bow. For all three, there exists 
a transition Froude number a t  which the bow wave begins to overturn and break. 
The value of the transition Froude number varies with bow shape. The fuller the 
profile geometry, the larger is the value. Thus, the bulbous bow delays wave 
breaking. 

For all cases studied, an isolated stagnation point located below the free surface 
occurs during the initial stage of the wave formation. If the Froude number is above 
the transition value, the stagnation point remains trapped below the free surface as 
the wave overturns. Below the transition Froude number, the stagnation point rises 
to the surface as the crest of the bow wave moves upstream, and away from the body. 
These calculations suggest that, a t  sufficiently low Froude numbers, the flow can 
reach a steady-state condition with the stagnation point located a t  the free surface. 

The research and preparation of this paper has been supported by the Office of 
Naval Research under contracts N00014-84-KO026 and N00014-88-K0002. 
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